Making Your Own Springs

Sometimes when I’m building a project I run into a problem where I can’t find just the right spring.   I make the rounds of the various hardware stores and all the springs are too big, or too short, or not stiff enough.   I could order some, but that’s a big delay, and once you add shipping the springs are going to be kind of expensive.   That’s when it’s time to make a few springs.   It’s fairly easy to wind springs on the lathe, and you can make them long/short fat/thin.   I wind mine out of Piano Wire, and they work fine.   commercial springs are going to last longer so for things that are going to be cycling constantly use the commercial ones, but for the kinds of things I do it’s handy to be able to make your own on the spot.

springWireHolderI recently had to make some compression spring for a Gong Ringing Robot, and I took a few pictures to show how it’s done.   You need a way to tension the wire as you crank, so  I made this little holder by drilling a #47 hole in a 1/4-20 bolt and then tapping a hole in some square stock so I could clamp that in my tool holder.  I added a plastic washer and a 1/4-20 nut that could be adjusted to put some tension on the wire and put some tension on it. The whole bold floats free in it’s threaded hole so it’s naturally tracks at the angle the wire wants.

springOnRodTo wind the spring I just bend the end of the wire so I can tuck it between the jaws on the lathe.  A somewhat acute angle is better to cut down on slip out.  Then I crank the lathe by hand to put a couple of turns on the rod.   Then you engage the half nut so the wire is fed evenly down the rod, just like when threading with a single point tool.   When the spring is long enough you disengage the half nut and do a couple more turns to form the other end of the spring.

Don’t do this under power.  A whipping piano while will cut you badly.  I always wear a face shield even while doing it by hand.  Clipping the piano wire with some diagonal cutters is fun because it sometimes shoot a few sparks.  (I guess due to the carbon content of the wire.)

chuckAndTailStockChuckFor small springs like this where the rod I’m winding around is thin, I hold the other end of the rod in a Jacobs Chuck in the tailstock.  I don’t have one that rotates freely, but if you just use the normal one and loosen it up so it’s not clamped on the rod, the rod is fee to turn, but the jaws support the rod so it doesn’t deflect.

latheHandCrankcrankInHeadStock

How do I crank my lathe by hand?   You can of course just twist the chuck, but long ago I cast this hand crank.   It goes into the head stock of the lathe, and expands to clamp in.  Then I can crank away with style.  After clipping the springs free, and grinding the ends flat, I usually stick them in the oven at 400 for 30 mins.   That’s supposed to relieve some of the stress put into them when winding them.    Here you can see the final springs just before I wrapped them in Aluminum Foil and stuck them in the oven.
springsJust  a few final notes.  Make sure not to nick the springs.  That will make a horrible stress riser and the spring will eventually fail a the nick.  Don’t try winding a bunch of springs in one go starting and stopping with the half nut, and cutting them apart later.   That seems like a good idea, but trying to adjust things to be able to re-engage the half nut in the middle of making springs makes for sloppy springs.  I made these springs form $1 worth of piano wire, and maybe an hours worth of fiddling, but that included building that 1/4-20 wire holder.   I used to just tension the wire with a Jorgensen Clamp, but this way gives smoother starts/stops since the place I’m holding the wire is closer to the rod it’s winding around.   Normally it only takes a few mins to wind some springs.  (Not counting time in the oven)

 

Turning A Magic Wand

Trying out the gripIn the run up to Christmas our family went to Dickens Faire, and my son really wanted to buy a wand at the wand shop.  I told him we could make one at home.   Now that the Christmas rush has passed we’ve finally gotten around to making one.

We chose a length of dowel rod, and I marked the hand-grip section out with a pencil.  Then I put it in the lathe and turned it out freestyle.  We did it out in the driveway to keep my shop from getting full of wood shavings.  I really should put some roller wheels on the end of that lathe.  It’s kind of small but still not much fun to haul out from under the workbench and lug out to the driveway.

Hand on Wand

My son tries the wand’s grip to test the comfort level.

I couldn’t find all my turning tools, but was able to track down a big gouge and I made do with some chisels I had around.   My son seemed to enjoy the process.  He was amazed at how the dowel seemed to stand still after the not-so-centered wobbly parts were turned down and it was running true.  The wand is not going to win any awards but he can hardly put it down.

This summer we dug for Herkimer Diamonds and we’re planning on gluing one to the tip of the wand.   I also will try to make  a secret compartment in the handle by cutting that trailing ball off, center drilling, and re-attaching with a dowel.   Lord only knows how I’ll hold the wand in the lathe for center drilling.   I guess I should have though of that first.

Pastry Cutter Final Results

backingPlateCloseUpAfter finally getting the last parts cut on Dec 23 I had to go into a fabrication frenzy.  I was constantly ducking out into the garage to do the next round of glue and/or paint.   One of the real tricks with these cutters was getting the push plate positioned really accurately inside the cutter walls.   There was no positive alignment when I glued the cutter walls to the top plate.  If the push plate was off by much the plate would bind against the wall and stick.   Here you can see the system I came up with.  I glued up everything else, and positioned the backing plate on a scrap rod.  Then I just put in a few drips of solvent on the backing plate, and plop on the push plate.  I had enough time to position it exactly and then let the solvent do it’s work.  I left the protective paper on the under side of the backing plate so there was no danger of a stray drip of solvent fusing the backing plate.  This system worked great, but it did  mean that the parts weren’t interchangeable.  That really didn’t matter much.

moominSpringI cut some springs/push rods.  I needed them to be just the right lengths so the spring would still exert some upward pressure when fully up, but would bottom out before the push plate could be pushed all the way out of the cutter housing.   That protects the assembly and makes it hard to apply a lot of sideways or pulling forces on the push plate.    I used 1/8″ tubing instead of rod so the glue could bind to the inside of the tube a bit.  It also makes it so you can fill the hole with glue, and when you insert the tube the extra just goes up inside the tube instead of squirting out all around.  I chose stainless over brass to be more food safe.   The springs aren’t stainless though, so they really shouldn’t spend too much time in contact with water.

Moomins ClampedOnce I had assembled and glued the cutters they had to be clamped to keep the springs from tearing them apart before the glue was fully cured.   Here you can see a two Moomins clamped in the jaws of a big Jorgensen Clamp.  Don’t worry.  I was gentle.   I managed to get them all done in time for Christmas *phew*  but I did end up having to give them away 100% untested.  Eek!

moomintrollCutResultsThe day after Christmas I finally got to take them for a test drive.  I had had to make the cutting walls a bit thicker than I would have liked, in order to have enough surface area for the solvent welding.  That made it so you have to push down a bit harder than with the comercial cutters, and give a little bit of a twist or your Moomins end up with a paper thin fringe, but ultimately they worked fine.  Giving gifts I hadn’t fully tested was a  bit hair raising, but it all worked out in the end.

snufkinAndMoomintrollbakedMoomintrolls
The details were crisp, and after some baking so were the Moomins.  Mission accomplished!

Making a Egyptian Retro Technology Labyrinth Game

When I was young we used to spend time at my Grandparent’s house.  It was a farm house with a porch swing and there were lots of fun things to do.  My Grandfather would tell the story of my first trip around the yard on the go-cart.   I was very young and when I came back around I told him I’d “never operated a motor vehicle before!”  and he thought that was hilarious coming from such a little kid.  There was a mini bike (until we broke the front fork doing jumps) we played Jarts, yes all sorts of “dangerous” distractions.

One of the fun things we’d do is play an old wooden Labyrinth Game that they had.   We played it so much that we could run the ball all the way though and all the way back.  We played it so much that we tried playing it with our feet.   One day one of the control strings broke and although Grandpa “fixed” it he wrapped the string around the wrong way. Reversing that control, and permanently invalidating all our muscle memory for that game.

The Idea

Though TechShop I have access to a laser cutter.   Each year I build some sort of crazy Christmas Project, and this year I decided that a Labyrinth Game would be an awesome thing to make with the laser.   I decided on a Egyptian with a retro-technology flavor. (To fit in with the Secret Society theme I’d been following for a few years.)  I went with the kiddo’s to the local Rosicrucian Museum to do some first hand research.  I went to Toys R Us to see if they had one of those games.   I talked to 4 people there and non of them had any idea what I was talking about.   I then went to a smaller local toy store and the guy knew at once what I was talking about, and he had them in stock.   This more modern instance of the labyrinth had the same design (same hole pattern/course) but had been cheapened in a number of ways.  The metal balls were smaller, but the course had not been fully adjusted for that size change, which made some shortcuts/cheats possible.  I was able to finish the maze on the third try though, so my muscle memory from 25 years ago seemed good.   It was only $21, so you can’t expect much at that price point.

The Design

I started in on the design, I wanted to make a lid for the maze so it would come as a decorative wooden box.  I was originally going to put brass clasps on the lid, but eventually had to abandon that plan because of time constraints.  It would both cost a lot and I’d have to strip/age the brass fittings, and I was planning to build 6 of these things so it was better to keep it simple.   I did some sketches, and looked at Egyptian Art.   I noticed that the Scarab was a nice fit thematically since he’s such a famous ball roller.  (Although this project didn’t involve any dung.)

I had bought a lot of very thin wood from Minton’s in Mountain View when they went out of business, so I decided to do an inlaid wood Winged Scarab on the box lid.

Normally with these projects I do 4 of them by Christmas Day, but then have 2 others I finish up before New Years.  (For out of town folks where the timing isn’t as critical.)   However when I started working on this one I realized that the physical size of the project was going to require more laser time then I was used to using.  It takes a full hour to etch the scarab on the lid.   So I quickly realized I wasn’t going to be able to schedule enough laser time before Christmas to cut/etch all the parts needed for all 6, so for the first time I limited much of my part cutting to the basics I’d need for the first 3 and then I’d cut the rest after Christmas when laser time is a lot easier to schedule.

Scarab Deep EtchThe 60watt laser deep etching the scarab into the lid.

Scarab With BallThe laser etched ball glued into the lid

Parts OrganizerThis is how I organized the parts.  They are laser cut, but I tape them down to the surrounding wood before I take them out of the laser. That way the uncut material acts as the parts organizer, then I can just slip them into these three ring binder page protectors.  Using this system one three ring binder can keep track of all 8 zillion parts.  As long as you never EVER pick up the binder upside down and dump everything out!  I put a big orange arrow on the front of my binder to help keep that from happening.

Glue Setup 1The main body being glued.

glueSetup2There are 88 pieces for the wing segments alone, so it takes a while to glue up.  After the parts go in I clamp them down to dry.  The pieces aren’t a super tight fit, so hopefully that’ll leave enough room for expansion/contraction of the wood.

Fully Populated LidIt is ready to clamp, but I didn’t clamp this first one.  It’s always a learning experience, so this one was never fully flat/level.  Later ones were better in that regard.  I had 3 mistakes in the wing segments.  (two parts were swapped, and two were actually the wrong shape)  So I had to figure that out, and cut extras.  Once all that was ironed out things went more smoothly.

Three ScarabsA shot of the very first prototype in normal plywood, and two of the final ones in the 1/4″ Mahogany Ply that I got for the project.

Lid First CoatThe lid after being glued to the sides and with it’s first coat of Linseed Oil.

Inside Corner Of LidThe inside of the lid before finishing.  I wasn’t too happy with these two corners. They align the lid to the base, but don’t look that great.  Later I tried a bit fancier shape/look.  the little right angle brackets with the holes are nice and fancy looking, and quite simple to do.  Of course that’s 8 more things you have to glue in (two on each side of the lid.)

Side Of Box Mocked UpThe lid sitting on one of the sides just to show how the wings will work.   this is before I started the Linseed Oil finish work.

Side With KnobThis is one of the sides laid out with one of the knobs.  Above you can see the zip lock bags I used to organize thick knob segments.  I made the knobs from three segments of 1/4″ wood plus a very thin wood layer for the eye.

Knob PartsThe knob is made up of 4 parts. You can kind of see the funky strait knurl.

Knob Glue UpI glued the knobs up on a brass rod held in the lathe’s chuck, so you can make sure the rod would be plumb.  Otherwise the stack of laser cut parts is bound to wobble as it turns.  However you could just as easily do this with a piece of brass rod stuck into a hold that was drilled plumb.  There’s no real need for a lath with this project.  It was there, and that made it easy.

Knob On LatheYou can see a little to much glue sticking out of one of the glue joints.  It’s nice to wipe it down with a damp sponge to reduce the amount of glue visible.

Joined CornerHere’s an early test cut of the corner joint. The laser cuts in a slight V shape, but you can compensate for that a bit by shaping the fingers into actual dove tails.  (Thanks Heath for the idea!)  However you can only do that in one direction if you try to compensate in two directions you get a tight joint that needs a teleporter to be able to assemble it (since there are then wide fingers on the outside of each joint)  I guess you could do it the other way around, and have 2 axis fixes for both joints with reverse dove tails, but then I would have had to flip the wood over after etching but before cutting, which would have been an alignment hassle.  The joints where plenty tight as it was.  This test is using Cedar, but I ended up using Alder which has a less pronounced V shape to the laser cut.   (And which I could get locally at Home Depot)

Ball Outlet DetailHere’s a final corner with a detailed look at the ball exit.  The bottom part of the box extends to create the ball return area.  That makes it much stronger since there’s 1/4″ plywood supporting the return area instead of something just glued onto the side.

Beginings Of Mass ProductionAfter the design was done I had to crank up for mass production.   Here are the sides/lid sides for three boxes (well minus the lid sides for one.) A set of 2 sides takes about 15 mins to etch/cut out on the 60Watt laser.

Tilt Floor Wedges Glue UpHere’s the design of the box floor.  It has 3 wedges which will hold the tilted floor that makes the ball go to the exit. You can also see the 4 screw holes since the floor needs to be removable for possible maintenance.

Tilted Floor After Glue UpI sanded the bottom corner of the tile floor so that it can smoothly go down to almost nothing at the exit port.

Ball Defector DetailI do however have to provide a special corner piece to keep balls from getting stuck behind the post that the screws screw into.  In theory the ball could still fall onto the upper corner of this piece and get stuck, so if you really cared you could sand the top to be slightly curved, but the chance of that happening are small enough that I just don’t care to do the extra hand work to handle that case.

Ball Deflectors Glued InHere you can see three of those corner pieces getting glued down.  The middle tilted floor was the very first floor, using different wood.  On some of them I also sanded a slight dip in the top of the plywood at the exit, but that turned out not to be necessary and it doesn’t look that great.

Tilted Floor In PlaceHere you can see the tilted floor in place.  You’ll notice that the blocks glued into each corner (so the base can screw into those blocks) have tops that are cut at an angle to make it so the ball can’t get stuck on top of one of the corner blocks. You’ll notice that in this fit up I don’t have the special corner piece glued in yet.

Spring Winding RigI decided to wind my own springs for this project.  Mostly because I couldn’t find the right quantity of the right size/tension of spring locally.  This wasn’t that hard to do, but was a bit of a time sink.   Here you can see me using a Jorgenson clamp to tension the wire as I hand crank the lathe to wind the wire into this brass rod.  That is the easy part.  The annoying part is then cutting/forming the ends on the wires.

Hand Wound SpringsHere you can see two of the better resultant springs.   I used a dull Exacto blade to spread the coils enough to get in and bend the loops the rest of the way out with pliers.  After the first three were built I had some time after Christmas and found some suitable springs at Tool Land, so I only had to build the first 6 springs, not all 12.

bushing Pressed Into Wood FrameI used brass tubing pressed into the wood to form bushing for all the brass rod joints, this makes for super smooth action and long life.

Hot Glued Saw Stop For Cutting BushingsHere you can see me cutting a bunch of the bushings.   I used this super cheep Harbor Freight micro chop saw, and hot glued a stop to the saw at the right distance.  That makes it super easy to cut 20 zillion of these things.   Note how the stop is angled and only touches the edge of the tube, so it doesn’t cause binding when the tubing cuts through.  After you’re done with the stop you can just pry it off of the saw.   Some day I’ll make a fancy tubing holding/adjustable stop system, but this works well as long as you don’t have to do too many different sizes, and it could just be used in the saw as-is.  I didn’t have to dive into an extra project rat hole.

Control Rod Bushing CloseupHere you can see one of the bushings in place around the rod.

Brass Bushing And SpacerI also made a number of pivot pins using a round wooden washer and a bit of tubing.  You can see one here (blurry) ready to go into the hole.

Maze Frame ClampedHere you can see a frame getting glued to the maze floor.  I laser etch the locations of all the wall segments, and put numbers in them so I know which pieces go where.  There’s also an arrow, and hazard numbers for the game itself.   Notice how I used scraps of wood that were cut from the jaggy edge areas as clamping sections so the clamps wouldn’t damage the pointy parts of the wood.   The first one of these I did I didn’t do that, but used padded spring clamps, but there was some slight damage done, so I switched to this system.  There are about 45 pieces that get glued down to make the maze.

Mostly Populated MazeHere is the maze partially populated.  I didn’t bother to number unique segments since there aren’t a lot of them and it’s easy to keep them strait.  In the upper right you can see the piece of wood that the parts are coming from.  The parts are numbered in columns from top to bottom 13 to a column.

Maze And Parts SheetHere’s a closer view including the now fully empty parts sheet.

Maze Texture Closeup 2The walls of the maze have this herring bone texture on them, including miters at the various intersections.   The circular arc wall segments have a slightly bigger pattern because it was a pain to get them distributed along the circles in Illustrator.  I think I could do a better job now knowing more about pattern brushes, but I was just using the Offset  Effect, and getting that with perfect spacing was a pain.

Maze Miter DetailsSome of the miter work on the maze walls. Lots of tiny herring bones.

Eye Knobs On LidHere are some more parts glue drying getting ready for assembly.

Washers And WedgesHere you can see how easy it is to make a mess of wooden washers (left) and wedges for the tilt floor (right).  This is enough for all 6 labyrinths.

Staple Gun With Brad SpacerI was originally going to drill/bend brass wire loops to attach the drive train to the pivoting frames, but that was going to take FOR EVER to do, so I opted to just my staple gun.  This was terrifying because I was stapling into fully finished things on Christmas Eve.  So being off and having a staple come splintering out would be VERY bad.   So I practiced on some scrap first.  I used this brad to keep the staples from fully seating so you could then tie strings/ attach tensioning springs to the staples.

Spring CloseupHere you can see one of the springs attached.

String And SpringAnd the way that the spring tensions the string as it wraps around the rod.

Both Rods In PlaceA closeup of the two rods in place with the strings on and tensioned.

Fully Strung Maze From BottomThat’s the full view of both rods in place and strung up.

Bucket Of EyesThe knobs for the first size mazes are sprouting like strange flowers from a pink bucket.  (glue drying stand.)

Set Screw CollarsMy brass control rods are 5/32″.  Thankfully they make 5/32 locking collars for some sort of hobby use, so I was able to buy them for cheap.  Here are enough locking collars for two mazes.

Lock Collar In PlaceA closeup of one of the collars before I put the set screw in.

Knob Side ViewThis is a closeup of one of the knobs with it’s spacer washer and locking collar in place.

Brass Screw Next To FootThe bottom of the box screws into place just inside the corner feet that that box has.

Maze Boddy CompleteBoth frames and the knobs in place for the first time.  Time to play test!  The first play testing happened at 9pm Christmas Eve, so it was good that it worked because there wasn’t time to make any major changes.  I did end up re-tensioning things to deal with some stretch in the strings/knots.

Velvet Bag Stiched UpThen it was time to sew up some black velvet bags for the ball bearings to go in.

bag Sewing CloseupThere the bag is turned right side out.

Balls And Bag On Maze SurfaceThe three balls on the velvet bag.

Maze With LidThe maze opened up so you can see the maze surface.

I made a video of the laser cutting, and the kiddo’s playing with it on Christmas Day.

Maze With Lid On

The final finished box.   I managed to make 3 by 2:30 am Christmas Eve.

 

Building a Mechanical Cryptograph

Prototype Cryptograph Front ViewThis year I’m building an encryption device for my Retrotechnology Society. If you recall last year 6 of my friends/relatives were “antecedently” inducted into a secret society. The only down side being that the society was so secret that I never heard back from anyone. This year I’m going to change all that by providing them with this encryption device, so they can communicate with me (and one another) in cipher. Functionally it’s based on the 1850’s Wheatstone Cryptograph, design wise I’m working on spicing it up a bit.

Thumb Wheel Closeup

These images are of the very first prototype. It’s totally rough. I want the basic shape to be the Retrotechology Logo of the 11 toothed gear with an eye in the middle. I’m trying to design the eye so that it “looks around” as you encode/decode messages. You turn the thumbwheel at the upper right, and that drives two gears which turn two rings of letters which are visible though two openings in the face of the device. The eye design is really rough, and various spacings will be adjusted, but this is mostly just a proof of concept to make sure things are actually going to be functional.

These were laser cut out of clear 1/8″ acrylic. Later versions will have to have clearance areas etched into various parts, etc. (to prevent binding) and I’ll have double brass sleeves acting as the bearings. (right now it’s all just jammed in 1/8″ brass rod to hold it together enough to make sure things were working out.) I like how it’s coming out, but I think the aesthetic of the eye design really has to be worked out some more. Still I think it’ll be fun. The final color scheme is going to be black, with white disks inside. I haven’t deiced yet what to do with the back. I could add some cutouts that would expose the gearing a bit. Kind of a skeleton Cryptograph, but that might make it less functional.  “keep your fingers and crud out of those holes!” so I haven’t decided. Maybe just a redux of the eye.

I wrote the code to generate the gear profiles in python, and then imported that into illustrator and did all the rest of the work there.

Speedball Rubber MaterialOk, so then it was time to cut out real versions in the right colored plastics, etc. I used black for the outer casing and “Ivory” for things like the friction wheel, and the lettered discs. In the design the black front/back called for gold and white lines. I thought this was going to be a real pain to do, but I came up with a trick. I used a little rubber squeegee (cut from a Speedball rubber pad) and was able to squeegee gold paint down into all the lines and curves in a jiffy.

Squeege BlopsThis squeegee system reduced the amount of paint used, and really speeds up the whole process. The fills are more uniform too. I don’t want the fills to be perfect because the device is supposed to look sort of old, but the amount of time I was saving painting all that stuff made using the squeegee super important.

First Squeege StrokeOnce the splops were on, it was just a couple of strokes to fill every line.

Cleaning Out Center HoleI did have to manually clean out the center hole. It doesn’t matter if there’s a bit of extra gold paint in there since it’s going to have a brass tube pressed in, but we can’t have a thick blob.

White Over GoldIf you look closely you’ll also see that I have scraped the outer ring free of most of the gold paint using a paper towel and my fingernail. Then I painted white over the top.

Faux Ivory Friction WheelsThese are the faux Ivory thumb wheels with their special strate knurl, and inlayed arrows. (Done with the same painting technique)

Gears And Etched ClearancesI would have rather had the gears be “ivory” but since they’re not actually visible, I was able to cut them nested inside the other black components, and save a lot of material. I’ve toyed with the idea of making a fancier gear and a “skeleton” version of the Cryptograph, but decided to punt. The dark rings and little “tabs” you see in this are places where I’ve etched extra clearances on the gear/outer wall of the device so that friction wheels can run more smoothly without their knurl making their action feel “notchy.”

Laser Cut Book TestI also did some initial tests of burning a deep deep hole in a book. I’ve had people tell me it’s impossible to laser cut books, but you can.  You simply have to clamp the pages together so they aren’t as prone to catching fire.  I laser cut a clamping jig, and the first cut went well. (Probably 1/4″ easy) but subsequent cuts are bad because the loose paper and forced air cause a lot of burning. (I remove the inner paper, but the walls aren’t as well clamped as they were before and there’s a lot of smoke and mayhem. So I think I’m going to have to change the way I index the rig and flip pages/reclamp after each cut until I get to the needed 5/8″ inch depth. Still here you can see a piece inside a book with only minimal effort. I don’t think I’m going to glue or do anything extra. Just cut the hole so the device can be tucked into the book for safe keeping.

I did this test on a volume of a Funk and Wagnalls New Encyclopedia. (Millions were given away free in super markets back in the day, and it’s hard cover with gold outer trim, so it seemed like a good call.) I really need to find some uniform nice looking old hardbound books that no one wants/cares for. Not sure how I’m going to do that, this thing was $4 at Goodwill. I have no idea why anyone but me would buy such a thing, and that’s a kind of steep price! If I could have snagged 10 volumes of this F&W I might do that, but I’ll have to keep looking.

Parts During AssemblySo this morning I started assembling a final unit. Here’s the parts mostly laid out. They gray part of the eye is supposed to look a bit rough like that. I want the device to seem a bit old, not super crazy snappy new.

Pins And Gears During AssemblyHere’s the body assembled with its 11 pins in place. (11 pins! I have to cut and deburr all those by hand, 1/8″ is a bit small to automate on the lathe. (Kill me.) You can also see the super fancy inner pin that drives the middle disc via a square drive shaft that passes though the center of the other gear.

Friction Wheel In PlaceHere’s a closeup of the friction wheel on it’s shaft. You can see it’s inner brass sleeve.

Center Shafts And TorchHere you can see the most complicated brass part for the project. Most of the 18 brass pieces are just bits of rod or tube, but the central drive shaft is made up of a brass rod, and square brass tube, and then a custom machined brass tube (the needed to be machined so that it nested to the outside of the square tube and then nested properly inside the 1/4″ brass tube sleeve that is in the center of the upper gear. This shaft lets the bottom gear smoothly drive the lettered disk that is on top of the upper gear.

I was originally going to solder the bits together, but they pressed together so nicely all I really had to do was add a dab of JB Weld to eventually fix the central rod to the inside of the square shaft. This let me adjust things up/down slightly on assembly. Which was nice.

Another One Being AssembledAnother device nearing completion.

fourNearlyReadyForStampingHere you can see four of the devices, three done, and one just needing to have the bottom paper pealed off. You can also see last years wax seal, and some sealing wax because I’m about to put the devices in their books and package them up for shipment.

Book Press Before UseThe process of cutting the books was a real messy pain. In order to be able to cut a lot of pages at once I had to make this book press which clamps 80 some pages at a time, and lets me do alignment of the cut. You can see the little ‘L’ shaped page alignment guides for positioning the corners of the page.

Book Being CutThe problem with cutting so much paper is that you have to go slow, and the compressed air blowing in the machine makes the paper char a lot more then it would for cutting just a few sheets. So there’s a lot of char and mess, and although you only spend maybe 3 mins in the laser doing each cut the time it takes to do a cycle (take out the old paper, clamp up the new paper, and tape things up so various pages don’t fly around while the laser is cutting, etc. eats up a lot of time, and you have to watch the cut like a hawk to make sure it doesn’t go to open flame, or something comes untaped and is flapping around, etc. Nothing I’ve ever done on the laser before was “messy” in this way.

Press And Six Cut BooksIn the end I did manage to cut 6 books before Christmas.

theBlackHandI was lucky to get this 1909 lavishly illustrated 12 volume set of “Adventures in Bookland” which was great because they were all the same size, which simplified alignment. I got all of them (plus some more books) for $5 at the Friends of the Library book sale. So it was a great deal, but I paid a heavy price in terms of guilt. It was horribly Fahrenheit 451 and I felt awful cutting though all the stories I knew like Robinson Caruso, etc. I’ve kept all of the cut out illustrations for possible future use, but my hands have run black with the blood of many an old book and that made me feel bad.

Device In BookHere is an image of the device in a book.  I love the way it looks like the device has burned its way into the book.

eyeInBookHere’s a close up of it in the book. The “top” page here is quite burnt because it was exposed to the most compressed air laser action. Intermediate pages were much less burned looking, but every sixty pages or so theres are a few really burnt ones because that was the next layer I cut. Alignment between the layers isn’t perfect, but it’s decent.  You can see I added a faux window reflection that holds still as the eye looks around.  I’m really proud of the way this turned out.  Now to see if I get an encrypted messages!